Abstract
Iron is essential for oxidation-reduction catalysis and bioenergetics, but unless appropriately shielded, iron plays a key role in the formation of toxic oxygen radicals that can attack all biological molecules. Hence, specialized molecules for the acquisition, transport (transferrin), and storage (ferritin) of iron in a soluble nontoxic form have evolved. Delivery of iron to most cells, probably including those of the kidney, occurs following the binding of transferrin to transferrin receptors on the cell membrane. The transferrin-receptor complexes are then internalized by endocytosis, and iron is released from transferrin by a process involving endosomal acidification. Cellular iron storage and uptake are coordinately regulated post-transcriptionally by cytoplasmic factors, iron-regulatory proteins 1 and 2 (IRP-1 and IRP-2). Under conditions of limited iron supply, IRP binding to iron-responsive elements (present in 5' untranslated region of ferritin mRNA and 3' untranslated region of transferrin receptor mRNA) blocks ferritin mRNA translation and stabilizes transferrin receptor mRNA. The opposite scenario develops when iron in the transit pool is plentiful. Moreover, IRP activities/levels can be affected by various forms of "oxidative stress" and nitric oxide. The kidney also requires iron for metabolic processes, and it is likely that iron deficiency or excess can cause disturbed function of kidney cells. Transferrin receptors are not evenly distributed throughout the kidney, and there is a cortical-to-medullary gradient in heme biosynthesis, with greatest activity in the cortex and least in the medulla. This suggests that there are unique iron/heme metabolism features in some kidney cells, but the specific aspects of iron and heme metabolism in the kidney are yet to be explained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.