Abstract

The protein delivery across cellular membranes or compartments is limited by low biomembrane permeability because of the hydrophobic characteristics of cell membranes. Usually the delivery processes utilize passive protein channels or active transporters to overcome the membrane impediment. In this report, we demonstrate that arginine-rich intracellular delivery (AID) peptide is capable of efficiently delivering fused fluorescent proteins unpreferentially into different plant tissues of both tomato (a dicot plant) and onion (a monocot plant) in a fully bioactive form. Thus, cellular internalization via AID peptide can be a powerful tool characterized by its simplicity, non-invasion and high efficiency to express those bioactive proteins in planta or in plant cells in vivo. This novel method may alternatively provide broader applications of AID chimera in plants without the time-consuming transgenic approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.