Abstract

Crossing of the plasma membrane for all macromolecules without energy, receptors or any artificial methods was thought to be difficult. Our previous studies demonstrated that arginine-rich intracellular delivery (AID) peptides are able to deliver macromolecules, such as proteins, RNAs and DNAs, into either animal or plant cells. Cellular internalization could be mediated by effective and nontoxic AID peptides in either a covalent or noncovalent protein transduction (NPT) manner. AID peptides were so versatile that the procedure seemed to replace the current artificial transfection methods. However, the utilization of AID peptides has been limited to animal or plant systems so far. None has proposed that AID peptides could work in other species. Here, we select some representative organisms to screen whether NPT mediated by AID peptides works in them. They include cyanobacteria, bacteria, archaea, algae, fungi and yeasts. The results reveal that not all living beings possess this capability of protein transduction. Interestingly, all species of prokaryotes tested, which were thought to be highly diverse from the animal and plant systems, appear to be capable of NPT. The mechanism of AID-mediated NPT in cyanobacteria is in a classical endocytosis- and energy-independent pathway and may involve macropinocytosis. In contrast, green algae and multicellular fungi of the eukaryotes are impermeable to protein passage. Our results bring an interesting clue to the reexamination of the phylogeny of both algae and fungi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.