Abstract

The aims of the present study were to examine the survival and the cellular and connective differentiation of intracerebral transplants of fascia dentata and hippocampus. Pieces of immature dentate and hippocampal tissue were taken from late embryonic (E18) and early postnatal (1-9 days old) rats and transplanted into the brains of 1- to 13-day-old and adult rats. After survival times from 4 days to 2 years the cellular and connective organization of the transplants was monitored in parallel series of sections stained with thionin (cell bodies), Timm's sulphide silver method (terminal fields). Nauta and Fink-Heimer methods (normal and degenerating fibers) and a method for AChE activity (cholinergic afferents). The transplants survived well in all combinations of donor and recipient ages used, and they survived and differentiated in all parts of the recipient brains, although relations to pial and ventricular surfaces appeared to be optimal. Cell differentiation continued after transplantation, and a characteristic laminar organization was retained, although least in embryonic donor tissues. The distribution of intrinsic connections was determined by the types of subfields present in the transplants and interaction with ingrown host afferents. All aberrant intrinsic connections observed corresponded to aberrant connections formed in the hippocampus and fascia dentata denervated in situ and included supragranular mossy fibers in the fascia dentata, aberrant infrapyramidal mossy fibers in CA3, spread of CA4-associated afferents beyond the normal commissural-associational zone in the dentate molecular layer together with ingrowth of CA3-associated and CA1-subiculum-associated afferents. Most transplants received a cholinergic input of host origin irrespective of the localization in the host brain, but also non-cholinergic host pathways innervated the transplants, in particular when the transplants were in close contact with host fiber tracts, and when the recipients were immature. At various transplant locations the non-cholinergic host afferents belonged to the commissural hippocampo-dentate system, the commissural hippocampal system and the callosal system. Other cases suggested innervation of dentate transplant by host entorhinal afferents. The formation and distribution of intrinsic transplant connections and connections between transplant and host appeared to be regulated by the same factors that regulate the development and reorganization of fiber connections in the normal and the in situ denervated hippocampus and fascia dentata. As a special variety of this, the distribution of cholinergic afferents adjusted to the distribution of the major intrinsic and extrinsic non-cholinergic pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call