Abstract

We propose a novel concept for cellular scaffolds with 2D-patterned mechanical properties. Thin films of glassy polystyrene (PS) with thicknesses ranging from 100 nm to 1 μm were prepared on epoxy resin-based line and space (L&S) patterned substrates. Although the outermost surface of PS on the L- and S-regions was sufficiently flat at the same level, the mechanical responses differed depending on the presence of the underlying resin foundation. The initial cell adhesion and spreading and the proliferation on the scaffolds were affected by the 2D-patterned mechanical properties, that is, cellular behavior was suppressed on mechanically unstable S-regions. A novel concept for cellular scaffolds with 2D-patterned mechanical properties was proposed. Thin films of glassy polystyrene (PS) with thicknesses ranging from 100 nm to 1 μm were prepared on epoxy resin-based line and space (L&S) patterned substrates. Although the outermost surface of PS was sufficiently flat regardless of the L&S patterned substrates, the mechanical responses differed depending on the presence of the underlying resin foundation. The initial cell adhesion and spreading and the proliferation on the scaffolds were affected by the 2D-patterned mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.