Abstract

A two-dimensional cellular automaton model was developed for the simulation of nucleation and growth of ferrite grains at various cooling rates in low-carbon steels. The model calculates the diffusion of the solute and temperature fields in an explicit finite method and incorporates local temperature and concentration changes into a nucleation or growth function, which is utilized by the automaton in a probabilistic fashion. The modeling provides an efficient way to understand how those physical processes dynamically progress and affect nucleation and growth of ferrite grains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call