Abstract

A cellular automaton model has been employed to investigate the transformation from austenite to ferrite in low carbon steels during continuous cooling. An important aspect of this approach is the implementation of incorporating local concentration changes into a nucleation or growth function, which is utilized by the automaton in a probabilistic fashion. The modeling gives a visual insight into the effect of cooling conditions on this transformation. The final nucleation number, the number of ferrite grains per austenite grain, ferrite grain size and the kinetics of ferrite formation are obtained as a function of the cooling rate or the undercooling temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.