Abstract

We studied the effect of 123I-labeled estrogen (123I-E) in estrogen receptor (ER)-rich cells in culture and in cell free model systems in vitro to elucidate the nature of the radiotoxicity for ER + cells of estrogens containing nuclides which emit Auger electrons. In cells the 123I-E caused a dose-dependent, unlabeled estrogen-inhibitable induction of chromosome aberrations. A dose of about 1000 decays per cell, which is approximately the mean lethal dose for these cells, resulted in an average of 1 chromosome break per cell. This supports the hypothesis that the lethal lesion induced by 123I-E is a chromosome break. Incubation of 123I-E/ER complex, but not 123I-E alone, with 27-mer duplex estrogen response element (ERE) DNA produced a dose-dependent cleavage of the ERE. However, we were unable to detect any fragmentation of either the 66 kDa full length ER in cell extracts or a purified 31 kDa hormone binding domain when incubated with excess 123I-E. Thus it appears that 123I-E effects its radiotoxicity by binding to ER, associating with ERE DNA and, by directing high LET radiation to DNA, inducing lethal chromosome breaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.