Abstract
To train deep learning-based segmentation models, large ground truth datasets are needed. To address this need in microfluidic live-cell imaging, we present CellSium, a flexibly configurable cell simulator built to synthesize realistic image sequences of bacterial microcolonies growing in monolayers. We illustrate that the simulated images are suitable for training neural networks. Synthetic time-lapse videos with and without fluorescence, using programmable cell growth models, and simulation-ready 3D colony geometries for computational fluid dynamics are also supported. CellSium is free and open source software under the BSD license, implemented in Python, available at github.com/modsim/cellsium (DOI: 10.5281/zenodo.6193033), along with documentation, usage examples and Docker images. Supplementary data are available at Bioinformatics Advances online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.