Abstract

We propose a novel way of imaging live cells in a Petri dish by the phase contrast microscope. By taking multiple exposures of phase contrast microscopy images on the same cell dish, we estimate a cell-sensitive camera response function which responds to cells' irradiance signals but generates a constant on non-cell background signal. The result of this new microscopy imaging is visually superior quality, which reveals the appearance details of cells and suppresses background noise near zero. Using the cell-sensitive microscopy imaging, cells' original irradiance signals are restored from all exposures and the irradiance signals on non-cell background regions are restored as a uniform constant (i.e., the imaging system is sensitive to cells only but insensitive to non-cell background). The restored irradiance signals greatly facilitate the cell segmentation by simple thresholding. The experimental results validate that high quality cell segmentation can be achieved by our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.