Abstract

The segmentation of cells is necessary for biologists in the morphological statistics for quantitative and qualitative analysis in Phase-contrast Microscopy (PCM) images. In this paper, we address the cell segmentation problem in PCM images. Deep Neural Networks (DNNs) commonly is initialized with weights from a network pre-trained on a large annotated data set like ImageNet have superior performance than those trained from scratch on a small dataset. Here, we demonstrate how encoder-decoder type architectures such as U-Net and Feature Pyramid Network (FPN) can be improved by an alternative encoder which pre-trained on the ImageNet dataset. In particular, our experimental results confirm that the image descriptors from ResNet-18 are highly effective in accurate prediction of the cell boundary and have higher Intersection over Union (IoU) in comparison to the classical U-Net and require fewer training epochs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.