Abstract

We present a cell-centered discontinuous Galerkin discretization for the two-dimensional gas dynamics equations written using the Lagrangian coordinates related to the initial configuration of the flow, on general unstructured grids. A finite element discretization of the deformation gradient tensor is performed ensuring the satisfaction of the Piola compatibility condition at the discrete level. A specific treatment of the geometry is done, using finite element functions to discretize the deformation gradient tensor. The Piola compatibility condition and the Geometric Conservation law are satisfied by construction of the scheme. The DG scheme is constructed by means of a cellwise polynomial basis of Taylor type. Numerical fluxes at cell interface are designed to enforce a local entropy inequality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.