Abstract

Parkinson’s Disease (PD) is a highly prevalent neurodegenerative disease that affects millions of people globally and remains without definitive treatment. There have been many recent advances in cell-based therapy to replace lost neural circuitry and provide chronic biological sources of therapeutic agents to disease-affected brain regions. Early neural transplantation studies highlighted the challenges of immune rejection, graft integration, and the need for renewable, autologous graft sources. Neurotrophic factors (NTFs) offer a potential class of cytoprotective agents that may complement dopa‐ mine (DA) replacement and cell-based therapies in PD. In fact, chronic NTF delivery may be an integral goal of cell transplantation in PD, with ideal grafts consisting of autologous drug (e.g., DA, NTF)-producing cells capable of integration and function in the host brain. This chapter outlines the past and recent preclinical and clinical advances in cell-based and NTF therapies as promising and integrated approaches for the treatment of PD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call