Abstract

BackgroundChikungunya fever is a pandemic disease caused by the mosquito-borne Chikungunya virus (CHIKV). E1 glycoprotein mediation of viral membrane fusion during CHIKV infection is a crucial step in the release of viral genome into the host cytoplasm for replication. How the E1 structure determines membrane fusion and whether other CHIKV structural proteins participate in E1 fusion activity remain largely unexplored.MethodsA bicistronic baculovirus expression system to produce recombinant baculoviruses for cell-based assay was used. Sf21 insect cells infected by recombinant baculoviruses bearing wild type or single-amino-acid substitution of CHIKV E1 and EGFP (enhanced green fluorescence protein) were employed to investigate the roles of four E1 amino acid residues (G91, V178, A226, and H230) in membrane fusion activity.ResultsWestern blot analysis revealed that the E1 expression level and surface features in wild type and mutant substituted cells were similar. However, cell fusion assay found that those cells infected by CHIKV E1-H230A mutant baculovirus showed little fusion activity, and those bearing CHIKV E1-G91D mutant completely lost the ability to induce cell-cell fusion. Cells infected by recombinant baculoviruses of CHIKV E1-A226V and E1-V178A mutants exhibited the same membrane fusion capability as wild type. Although the E1 expression level of cells bearing monomeric-E1-based constructs (expressing E1 only) was greater than that of cells bearing 26S-based constructs (expressing all structural proteins), the sizes of syncytial cells induced by infection of baculoviruses containing 26S-based constructs were larger than those from infections having monomeric-E1 constructs, suggesting that other viral structure proteins participate or regulate E1 fusion activity. Furthermore, membrane fusion in cells infected by baculovirus bearing the A226V mutation constructs exhibited increased cholesterol-dependences and lower pH thresholds. Cells bearing the V178A mutation exhibited a slight decrease in cholesterol-dependence and a higher-pH threshold for fusion.ConclusionsCells expressing amino acid substitutions of conserved protein E1 residues of E1-G91 and E1-H230 lost most of the CHIKV E1-mediated membrane fusion activity. Cells expressing mutations of less-conserved amino acids, E1-V178A and E1-A226V, retained membrane fusion activity to levels similar to those expressing wild type E1, but their fusion properties of pH threshold and cholesterol dependence were slightly altered.

Highlights

  • Chikungunya fever is a pandemic disease caused by the mosquito-borne Chikungunya virus (CHIKV)

  • To determine the conservation of the four amino acid residues across known alphaviruses, a partial sequence of CHIKV E1 containing the four residues was aligned with those sequences in 15 other alphaviruses: Semliki Forest virus, Ross River virus, O’Nyong-nyong virus, Sindbis virus, Eastern equine encephalitis virus, Ndumu virus, Venezuelan equine encephalitis virus, Western equine encephalitis virus, Fort Morgan virus, Whataroa virus, Aura virus, Sagiyama, Barmah Forest virus, Mayaro virus, and Middleburg virus (Figure 2)

  • G91, and H230 were conserved in all listed alphaviruses, and CHIKV E1 V178 was substituted by I178 in Aura virus and Barmah Forest virus

Read more

Summary

Introduction

Chikungunya fever is a pandemic disease caused by the mosquito-borne Chikungunya virus (CHIKV). E1 glycoprotein mediation of viral membrane fusion during CHIKV infection is a crucial step in the release of viral genome into the host cytoplasm for replication. The first open reading frame (ORF) of the genome encodes a polyprotein to yield all non-structural proteins nsP1 to nsP4. Viral membrane fusion with a cell membrane is mediated by the E1 glycoprotein, a class II fusion protein [3,4,5], in a process dependent on low-pH. In addition to the dependence on low pH for viral membrane fusion, cholesterol is required for both cell membrane fusion and budding during alphavirus infection [11,12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call