Abstract

The cell wall of wood tracheids is made up of various layers, distinguished from one other by the alignment of the innumerable, fine crystalline cellulose microfibrils within each layer that helically wind about the cell lumen. Microfibrils themselves are embedded in a more compliant, water-reactive matrix of amorphous lignin and hemicelluloses. The average inclination of microfibrils relative to the axis of the cell affects axial rigidity and dimensional stability of wood which are the two most important properties of wood. High and variable microfibril angles can be found in juvenile and compression wood, thus resulting in variations in product performance of forest products. For instance, seemingly identical trees in a plantation can have moduli of elasticity that differ by a factor of two or more. This is why the future is often seen in engineered wood products, where wood may be chipped, fiberised and blended before being glued together again: the average property values are little changed, but the range—the variability—is greatly reduced. There is the opportunity for better wood allocation and processing of timber, if averaged values for individual log characteristics, such as average microfibril angle, can be identified before the processing. In parallel there is genetic potential to select trees with low average microfibril angles. Unfortunately, determination of the average microfibril angle is a time-consuming, laboratory-based task. Preferably, a non-destructive, simple, field-hardened method should be employed that reflects the average microfibril angle in a given piece of wood. For this reason, acoustic methods have been developed to measure the velocity of sound propagation directly related to the stiffness of wood and in turn is dependent on the ultrastructure of the tracheid cell wall. In the fundamental equation, Edynamic=ρV2, the acoustic modulus is derived from two components, density, ρ, and velocity of sound, V. The latter relates to the intrinsic wood quality and ultrastructure of the tracheid wall. It is shown that acoustic methods can sort and grade trees and logs according to their suitability for structural lumber and for a range of fiber properties of interest to papermakers. Thus, acoustic methods have applications in tree breeding, harvesting, and wood processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.