Abstract
<p>Mitochondrial dysfunction plays a central role in Type 2 Diabetes (T2D); however, the pathogenic mechanisms in pancreatic β-cells are incompletely elucidated. Succinate dehydrogenase (SDH) is a key mitochondrial enzyme with dual functions in the TCA cycle and electron transport chain (ETC). Using human diabetic samples and a mouse model of β-cell-specific SDH ablation (SDHBβKO), we define SDH deficiency as a driver of mitochondrial dysfunction in β-cell failure and insulinopenic diabetes. β-Cell SDH deficiency impairs glucose-induced respiratory oxidative phosphorylation and mitochondrial membrane potential (ΔΨm) collapse, thereby compromising glucose-stimulated ATP production, insulin secretion and β-cell growth. Mechanistically, metabolomic and transcriptomic studies reveal that the loss of SDH causes excess succinate accumulation, which inappropriately activates mTORC1-regulated metabolic anabolism, including increased SREBP-regulated lipid synthesis. These alterations, which mirror diabetes-associated human β-cell dysfunction, are partially reversed by acute mTOR inhibition with rapamycin. We propose SDH deficiency as a contributing mechanism to the progressive β-cell failure of diabetes and identify mTORC1 inhibition as a potential mitigation strategy. </p>
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have