Abstract

The application of three-dimensional (3D) printed scaffolds for tissue engineering have gained significant attention in recent years. The biological activity of scaffolds used in tissue engineering applications depends on fabricating high-resolution patterns with fiber orientation and scale. In this study, Bacterial Cellulose (BC) and Polycaprolactone (PCL) composite scaffolds with the line spacing of 100 µm are produced using Electrohydrodynamic (EHD)-3D-bioprinting technique. The composite scaffolds exhibit enhanced biocompatibility with facilitated cell attachment and proliferation in vitro. The results of this work have demonstrated that EHD-3D-bioprinting method shows great potential for the preparation of BC/PCL composite scaffold and patterns for tissue engineering with enhanced bioactivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call