Abstract

To achieve specific and potent antitumor effect of hepatocyte carcinoma cells, replication defective adenoviral vectors, namely rAd/AFP-amiRG, rAd/AFP-amiRE and rAd/AFP-amiRP, were constructed which were armed with artificial microRNAs (amiRs) targeting essential functional genes glyceraldehyde-3-phosphate dehydrogenase, eukaryotic translation initiation factor 4E and DNA polymerase α respectively under the control of a recombinant promoter comprised of human α-fetoprotein enhancer and basal promoter. The AFP enhancer/promoter showed specific high transcription activity in AFP-positive HCC cells Hep3B, HepG2 and SMMC7721, while low in AFP-negative cell Bcap37. All artificial microRNAs exhibited efficient knockdown of target genes. Decreased ATP production and protein synthesis was observed in rAd/AFP-amiRG and rAd/AFP-amiRE treated HCC cells. All three recombinant adenoviruses showed efficient blockage of cell cycle progression and significant suppression of HCC cells in vitro. In nude mice model bearing Hep3B xenograft, administration of rAd/AFP-amiRG showed potent antitumor effect. The strategy of tumor-specific knockdown of genes essential for cell survival and proliferation may suggest a novel promising approach for HCC gene therapy.

Highlights

  • Cancer is one of leading causes of human death worldwide

  • To achieve specific and potent antitumor effect of hepatocyte carcinoma cells, replication defective adenoviral vectors, namely rAd/AFP-amiRG, rAd/AFP-amiRE and rAd/AFP-amiRP, were constructed which were armed with artificial microRNAs targeting essential functional genes glyceraldehyde-3-phosphate dehydrogenase, eukaryotic translation initiation factor 4E and DNA polymerase α respectively under the control of a recombinant promoter comprised of human α-fetoprotein enhancer and basal promoter

  • In seeking for a new approach for more effective Hepatocellular carcinoma (HCC) gene therapy, we proposed that blocking the fundamental metabolic processes including energy supply, protein synthesis and DNA replication in HCC cells might inhibit the growth and proliferation of cancer cells and achieve potent therapeutic effects

Read more

Summary

Introduction

Cancer is one of leading causes of human death worldwide. Liver cancer ranks the second in men and the sixth in women among cancer-caused deaths [1]. Many novel strategies are being proposed and investigated for their potential in HCC treatment including those through biological means such as gene therapy, which has shown the promising potentiality in cancer therapeutic interventions [2,3]. Multiple genetic and epigenetic alterations are involved in the development and progression of malignancies such as inactivation of tumor suppressors by mutation or down-regulation, activation of oncogenes by amplification, mutation or up-regulation, and other dysregluation of genes responsible for cell growth and proliferation, apoptosis, metastatic potential, and abnormal levels of noncoding regulatory microRNAs. Various approaches of gene therapy for cancer have been extensively investigated for their potential in inhibition/ reversal of malignant phenotypes of cancer cells such as uncontrolled proliferation, evasion of apoptosis, invasion www.impactjournals.com/oncotarget and metastasis, angiogenesis, etc. We failed to induce efficient apoptosis in some other tumor cells when bcl expression was inhibited efficiently (unpublished data)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call