Abstract

Determination of incorporation of the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) into DNA is a widely used method to analyze the cell cycle (see UNIT 7.7). However, DNA denaturation is required for BrdU detection with the consequence that most protein epitopes are destroyed and their immunocytochemical detection for multiplex analysis is not possible. A novel assay is presented for identifying cells in active S-phase that does not require the DNA denaturation step but nevertheless detects BrdU. For this purpose, cells were pulsed for a short time by an alkenyl deoxyuridine (5-ethynyl-2'-deoxyuridine, EdU), which is incorporated into DNA. The nucleotide exposed ethynyl residue was then derivatized by a copper-catalyzed cycloaddition reaction ("click chemistry" coupling) using a BrdU azide probe. The resulting DNA-bound bromouracil moieties were then detected by commercial anti-BrdU monoclonal antibodies without the need for a denaturation step. This method has been tested using several cell lines and is preferred over traditional BrdU detection since it is more sensitive and allows multicolor and multiplex analysis in FCM and imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call