Abstract
Determination of incorporation of the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) into DNA is a widely used method to analyze the cell cycle. However, DNA denaturation is required for BrdU detection with the consequence that most protein epitopes are destroyed and their immunocytochemical detection for multiplex analysis is not possible. A novel assay is presented for identifying cells in active S-phase that does not require the DNA denaturation step but nevertheless detects BrdU. For this purpose, cells were pulsed for a short time by 5-ethynyl-2'-deoxyuridine (EdU) which is incorporated into DNA. The nucleotide-exposed ethynyl residue was then derivatized by a copper-catalyzed cycloaddition reaction ("click chemistry" coupling) using a BrdU azide probe. The resulting DNA-bound bromouracil moieties were then detected by commercial anti-BrdU monoclonal antibodies without the need for a denaturation step. This method has been tested using several cell lines and is more sensitive than traditional BrdU and allows multicolor and multiplex analysis in flow cytometry (FCM) and image-based cytometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.