Abstract

Abstract The interaction between oppositely charged membranes and polycations causes cell aggregation, loss of membrane fluidity, and membrane degeneration and may cause an increase of its permeability. Unfortunately, the interaction is the reason why the use of polycations in medicine is severely limited. Therefore, in this paper, we share our observations related to the action of 40-kDa dextran modified using glycidyltrimethylammonium chloride, resulting in increased fibroblast cell proliferation. Using viability and proliferation tests [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, crystal violet, 3H-thymidine incorporation], we have observed that cationic dextran derivatives exert a positive impact on nonepithelial cell proliferation in vitro. This phenomenon has been noted for human and mouse fibroblasts and several other nonepithelial cell lines. However, the effect seems to be most pronounced for fibroblast cell lines. The presented studies allow to examine the impact of the polymer structure and the methods of its cationic modification on this newly observed phenomenon. The observation is unique because positively charged macromolecules usually exhibit high toxicity in all cell types in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call