Abstract

Tenascin is a novel six-armed extracellular-matrix glycoprotein expressed in association with mesenchymal-epithelial interactions, and its expression is temporally and spatially restricted during organogenesis and carcinogenesis. The distribution and alterations in the expression of fibronectin, laminin, and especially of tenascin, were compared between in vitro and in vivo studies with rat epithelial (hepatocyte-derived) and nonepithelial (sarcoma-derived) cell lines. Immunoprecipitation studies revealed that the production of extracellular-matrix glycoproteins varied among the cell lines. Two ascites-hepatoma-derived cell lines and one sarcoma-derived line were found to synthesize tenascin in vitro. Their major tenascin isoform yielded a molecular weight of 220 kDa under reducing conditions. The other cell lines examined, including all of those derived from normal hepatocytes, were negative for the expression of tenascin. Coculture studies were performed between epithelial and nonepithelial cell lines. No drastic change in tenascin expression was found after coculturing the cells. As an in vivo study, cell lines were transplanted into nude mice. All xenografts of the epithelial lines were associated with a strong positive reaction for extracellular-matrix glycoproteins, and especially for tenasein, in the mouse fibrous stroma adjacent to them. This represents the epithelial induction of stromal tenascin. Whether or not they produced tenascin in vitro, after transplantation none of the epithelial cell lines themselves produced tenascin, whereas both of the nonepithelial cell lines prominently produced tenascin. These findings suggest that, in the process of interactions between epithelial and nonepithelial cells, the expression of tenascin depends on the switch from in vitro to in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call