Abstract

Intracellular pH is an important modulator of cell functions, and its subtle change may dramatically affect the cellular activities and cause diseases. A reliable imaging of the intracellular pH is still a great challenge. We imaged the intracellular pH during the cell cycle at the single living cell level using newly designed cell-penetrating peptide conjugated pH nanosensors on a home-built in situ microscopic cell culture platform. The conjugated cell-penetrating peptide greatly enhanced the uptake of nanosensors without sacrificing the pH response. We observed a gradual alkalization from interphase to prophase and rapid acidification from prometaphase to telophase, reflecting variation and consumption of the species related to the energy storage during cell cycle. We realized SERS-based pH and fluorescence dual-mode imaging when the pH sensor was further modified with fluorescence dye. The integration of SERS imaging with in situ microscopic cell culture system offers great opportunity for revealing the intracellular pH-related biological and pathological processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call