Abstract

There are currently no means available for the efficient delivery of recombinant proteins into retinal cells in vivo. Although cell-penetrating peptides have been somewhat effective in protein delivery to the retina, they generally require conjugation chemistry with the payload, negatively impacting function of the therapeutic protein. In this study, we developed a novel peptide (Nuc1) that acts as a chaperone for delivery of small and large molecules, including steroids, peptides, antibodies, recombinant proteins, and viruses (adeno-associated viruses [AAVs]) across biological membranes in vivo without the need for conjugation. Nuc1 peptide was designed based on sequences known to bind heparan sulfate proteoglycans and nucleolin found on the surface of retinal cells. Nuc1 was injected into the vitreous of mice with a variety of molecules and retinas examined for uptake and function of these molecules. Nuc1 engages the process of macropynocytosis for cell entry. The delivery of functional recombinant X-linked inhibitor of apoptosis protein to photoreceptors via the intravitreal route of injection inhibited retinal apoptosis. Nuc1 was found to enhance the delivery of anti-VEGF antibodies delivered intravitreally or topically in models of age-related macular degeneration (AMD). Nuc1 enhanced delivery of decorin, facilitating significant inhibition of neovascularization and fibrosis in a model of AMD. Finally, Nuc1 was found to enhance penetration of retinal cells and tissues by AAV via both the subretinal and intravitreal routes of injection. Nuc1 shows promise as a novel approach for the delivery of recombinant proteins into retinal cells in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.