Abstract
Fluorescence staining and morphometrical measurements revealed that callose was a component of newly formed cell plates of symmetrically dividing cells and asymmetrically dividing antheridial mother cells during gibberellic acid-induced antheridiogenesis as well as in walls of young growing cells of Anemia phyllitidis gametophytes. Callose in cell walls forms granulations characteristic of pit fields with plasmodesmata. 2-deoxy-D-glucose (DDG), eliminated callose granulations and reduced its amount estimated by measurements of fluorescence intensity. This effect was accompanied by reduction of antheridia and cell numbers as well as size and atrophy of particular cells and whole gametophytes. It is suggested that inhibition of glucose metabolism and/or signalling, might decrease callose synthesis in A. phyllitidis gametophytes leading to its elimination from cell plates of dividing cells and from walls of differentiating ones as well as from plasmodesmata resulting in inhibition of cytokinesis, cell growth and disruption of the intercellular communication system, thus disturbing developmental programs and leading to cell death.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have