Abstract
BackgroundGerminal matrix intraventricular hemorrhage (GM-IVH) is associated with deposition of redox active cell-free hemoglobin (Hb), derived from hemorrhagic cerebrospinal fluid (CSF), in the cerebrum and cerebellum. In a recent study, using a preterm rabbit pup model of IVH, intraventricularly administered haptoglobin (Hp), a cell-free Hb scavenger, partially reversed the damaging effects observed following IVH. Together, this suggests that cell-free Hb is central in the pathophysiology of the injury to the immature brain following GM-IVH. An increased understanding of the causal pathways and metabolites involved in eliciting the damaging response following hemorrhage is essential for the continued development and implementation of neuroprotective treatments of GM-IVH in preterm infant.MethodsWe exposed immature primary rat mixed glial cells to hemorrhagic CSF obtained from preterm human infants with IVH (containing a mixture of Hb-metabolites) or to a range of pure Hb-metabolites, incl. oxidized Hb (mainly metHb with iron in Fe3+), oxyHb (mainly Fe2+), or low equivalents of heme, with or without co-administration with human Hp (a mixture of isotype 2-2/2-1). Following exposure, cellular response, reactive oxygen species (ROS) generation, secretion and expression of pro-inflammatory cytokines and oxidative markers were evaluated.ResultsExposure of the glial cells to hemorrhagic CSF as well as oxidized Hb, but not oxyHb, resulted in a significantly increased rate of ROS production that positively correlated with the rate of production of pro-inflammatory and oxidative markers. Congruently, exposure to oxidized Hb caused a disintegration of the polygonal cytoskeletal structure of the glial cells in addition to upregulation of F-actin proteins in microglial cells. Co-administration of Hp partially reversed the damaging response of hemorrhagic CSF and oxidized Hb.ConclusionExposure of mixed glial cells to oxidized Hb initiates a pro-inflammatory and oxidative response with cytoskeletal disintegration. Early administration of Hp, aiming to minimize the spontaneous autoxidation of cell-free oxyHb and liberation of heme, may provide a therapeutic benefit in preterm infant with GM-IVH.
Highlights
Germinal matrix intraventricular hemorrhage (GM-IVH) is associated with deposition of redox active cellfree hemoglobin (Hb), derived from hemorrhagic cerebrospinal fluid (CSF), in the cerebrum and cerebellum
We have previously shown that accumulated levels of metHb correlated with levels of tumor necrosis factor alpha (TNFα) protein in intraventricular CSF following preterm IVH [13]
Labeled F-actin showed an intermediate change in the polygonal organization of the cytoskeletal structure of the glial cells following exposure to hemorrhagic CSF (Fig. 1g) as compared to control cells (Fig. 1c)
Summary
Germinal matrix intraventricular hemorrhage (GM-IVH) is associated with deposition of redox active cellfree hemoglobin (Hb), derived from hemorrhagic cerebrospinal fluid (CSF), in the cerebrum and cerebellum. In a recent study, using a preterm rabbit pup model of IVH, intraventricularly administered haptoglobin (Hp), a cell-free Hb scavenger, partially reversed the damaging effects observed following IVH. Together, this suggests that cell-free Hb is central in the pathophysiology of the injury to the immature brain following GM-IVH. Cerebro-cerebellar deposition of the redox active cell-free hemoglobin (Hb), derived from hemorrhagic cerebrospinal fluid (CSF) in the intraventricular space, has been described to be central in the pathophysiology of brain injury following GM-IVH in preterm infants [2, 3]. Published data clearly describe the involvement of Hb in the development of brain damage [4,5,6,7], a limitation of the studies conducted up to date has been the inability to characterize the importance of the different Hb-metabolites responsible for the observed damage
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have