Abstract

Two models of isolated epidermis were used to demonstrate that the net orientation of cellulose microfibrils in the cell wall is related to mechanical properties of the tissue, and can be used as an indicator for wall anisotropy. In the developing plant epidermis, cells expand in one or two directions in the plane of the plant surface. In epidermis cells actively expanding in one direction (elongation), the orientation of cortical microtubules closely matches the net cellulose orientation. In epidermis cells expanding in two directions, the orientation of the parallel microtubules does not coincide with the net cellulose orientation in the adjacent cell wall. The orientation of cortical microtubules is thus not always a reliable indicator of wall characteristics. In both types of epidermis, a high rate of expansion correlates with a high activity of xyloglucan endotransglycosylase (XET), as determined in situ . This high activity alone cannot explain unidirectional wall expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.