Abstract

Cell electrospinning has tremendous applicability to a wide range of uses within both the laboratory and clinic. This has directly resulted from the technology's unique ability to immobilize multiple cell types with a wide range of molecules simultaneously within a fiber during the scaffold generation process. The technology has been shown to generate many cell laden complex architectures from true three-dimensional sheets to those multi-core vessels. Although those studies have demonstrated the versatility of this platform biotechnology, we show here for the first time the ability to immobilize primary cardiac myocytes within these fibers in our quest to develop this technology for creating three-dimensional cardiac patches which could be used for repairing, replacing and rejuvenating damaged, diseased and/or ageing cardiac tissues. These advances are unrivalled by any other technology currently available in the regenerative medicine toolbox, and have many interesting ramifications for repairing a damaged heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.