Abstract
Much research has recently been dedicated to applying genetic algorithms to populations of neural networks. However. While in real organisms the inherited genotype maps in complex ways into the resulting phenotype, in most of this research the development process that creates the individual phenotype is ignored. In this paper we present a model of neural development which includes cell division and cell migration in addition to axonal growth and branching. This reflects, in a very simplified way, what happens in the ontogeny of real organisms. The development process of our artificial organisms shows successive phases of functional differentiation and specialization. In addition, we find that mutations that affect different phases of development have very different evolutionary consequences. A single change in the early stages of cell division and migration can have huge effects on the phenotype, while changes in later stages usually have a less dramatic impact. Sometimes, changes that affect the first developmental stages may be retained, producing sudden changes in evolutionary history.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.