Abstract
Higher-energy-density, Wh L−1 or Wh kg−1, lithium-ion cells are one of the critical advancements required for the implementation of electric vehicles. This increase leads to a longer drive distance between recharges. Aside from material development, full lithium-ion cell design parameters have the potential to greatly influence fabricated cell energy density. The following work highlights the impact of these full-cell design parameters, investigating the effect of a negative to positive capacity ratio, positive electrode porosity, positive electrode active material content, and overall charge voltage on stack volumetric energy density. Decreasing the N:P ratio or increasing active material content results in an almost identical volumetric energy density increase: ~4%. Decreasing the positive electrode porosity from 40–30% or increasing the charge voltage from 4.2–4.35 V also results in an almost identical increase in volumetric energy density: ~5.5%. Combining all design changes has the potential to increase stack volumetric energy density by 20% compared to the baseline cell design.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have