Abstract
We studied the effects of berberine on the proliferation, apoptosis, and migration of skin melanoma A375 cells, as well as cell cycle-related miRNAs and their target genes, CDK1, CDK2, and cyclins D1 and A. The inhibitory effect of berberine on the growth of A375 cells was evaluated by MTT assay. Cell apoptosis was detected by trypan blue staining. Cell migration was assessed by the scratch test. Cell cycle phases were determined by flow cytometry. The levels of miRNA-582-5p and miRNA-188-5, and mRNA of their target genes encoding CDK1, CDK2, and cyclins D1 and A were measured by qRT-PCR. The expression of cell cycle-related proteins (CDK1, CDK2, and cyclins D1 and A) was determined by Western blotting. Berberine inhibited the proliferation of A375 cells in a time- and dose-dependent manner and significantly and dose-dependently enhanced cell apoptosis. Scratch assay showed an inhibitory effect of berberine on migration of A375 cells. Berberine in low concentrations (20 and 40 μM) caused cell cycle arrest in the S and G2/M phases, while treatment with high concentrations of berberine (60 and 80 μM) arrested cell-cycle in the G2/M phase. The increase in berberine concentration led to an increase in miRNA-582-5p and miRNA-188-5p expression and a decrease in the expression of mRNA for the corresponding target genes encoding CDK1, CDK2, and cyclins D1 and A. Western blotting also revealed reduced expression of CDK1, CDK2, and cyclins D1 and A. Thus, berberine suppressed the growth and migration of human melanoma cells and promoted their apoptosis. Berberine can increase the expression of cell cycle-related miRNAs and cause degradation of the corresponding target genes, thereby blocking the cell cycle progression and inhibiting the melanoma A375 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.