Abstract

Several mammalian forkhead transcription factors have been shown to impact on cell cycle regulation and are themselves linked to cell cycle control systems. Here we have investigated the little studied mammalian forkhead transcription factor FOXK2 and demonstrate that it is subject to control by cell cycle-regulated protein kinases. FOXK2 exhibits a periodic rise in its phosphorylation levels during the cell cycle, with hyperphosphorylation occurring in mitotic cells. Hyperphosphorylation occurs in a cyclin-dependent kinase (CDK)·cyclin-dependent manner with CDK1·cyclin B as the major kinase complex, although CDK2 and cyclin A also appear to be important. We have mapped two CDK phosphorylation sites, serines 368 and 423, which play a role in defining FOXK2 function through regulating its stability and its activity as a transcriptional repressor protein. These two CDK sites appear vital for FOXK2 function because expression of a mutant lacking these sites cannot be tolerated and causes apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.