Abstract

Multivariate latent variable methods have become a popular and versatile toolset to analyze bioprocess data in industry and academia. This work spans such applications from the evaluation of the role of the standard process variables and metabolites to the metabolomics level, that is, to the extensive number metabolic compounds detectable in the extracellular and intracellular domains. Given the substantial effort currently required for the measurement of the latter groups, a tailored methodology is presented that is capable of providing valuable process insights as well as predicting the glycosylation profile based on only four experiments measured over 12 cell culture days. An important result of the work is the possibility to accurately predict many of the glycan variables based on the information of three experiments. An additional finding is that such predictive models can be generated from the more accessible process and extracellular information only, that is, without including the more experimentally cumbersome intracellular data. With regards to the incorporation of omics data in the standard process analytics framework in the future, this works provides a comprehensive data analysis pathway which can efficiently support numerous bioprocessing tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.