Abstract

Cell-based therapies are an emerging biopharmaceutical paradigm under investigation for the treatment of a range of neurological disorders. Accumulating evidence is demonstrating that cell-based therapies might be effective, but the mechanism of action remains unclear. In this Review, we synthesize results from over 20 years of animal studies that illustrate how transdifferentiation, cell replacement and restoration of damaged tissues in the CNS are highly unlikely mechanisms. We consider the evidence for an alternative model that we refer to as the bioreactor hypothesis, in which exogenous cells migrate to peripheral organs and modulate and reprogramme host immune cells to generate an anti-inflammatory, regenerative environment. The results of clinical trials clearly demonstrate a role for immunomodulation in the effects of cell-based therapies. Greater understanding of these mechanisms could facilitate the optimization of cell-based therapies for a variety of neurological disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call