Abstract
The adhesion of bovine chondrocytes and human osteoblasts to three titania-based coatings, formed by plasma electrolytic oxidation (PEO), was compared to that on uncoated Ti–6Al–4V substrates, and some comparisons were also made with plasma sprayed hydroxyapatite (HA) coatings. This was done using a centrifuge, with accelerations of up to 160,000 g, so as to induce buoyancy forces that created normal or shear stresses at the interface. It is shown that, on all surfaces, it was easier to remove cells under normal loading than under shear loading. Cell adhesion to the PEO coatings was stronger than that on Ti–6Al–4V and similar to that on HA. Cell proliferation rates were relatively high on one of the PEO coatings, which was virtually free of aluminium, but low on the other two, which contained significant levels of aluminium. It is concluded that the Al-free PEO coating offers promise for application to prosthetic implants.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.