Abstract

To enhance the osseointegration of titanium implants, bioactive ceramic layers are grown on titanium substrate; they combine the osteoconductivity of hydroxyapatite (HAp) with the biological activity of TiO2. However, the effects of the adhesion and growth behavior of osteoblasts on bioactive ceramic coatings remain to be elucidated. Anatase (A-TiO2), rutile (R-TiO2), HAp and HAp-TiO2 dual-phase coatings were fabricated by micro-arc oxidation (MAO) on a titanium plate. The mechanism by which bioactive MAO layers induced cell growth at the interfaces between the coatings and the growing osteoblasts was investigated. Experimental results indicate that the bioactive ceramic coatings that were formed by MAO supported much greater cell mineralization than those formed on bare Ti. Among the four types of MAO coatings, the HAp-TiO2 coating provided the best cell mineralization owing to its abundance of Ca2+ ions and OH− groups, which promoted the formation of calcium phosphate, and consequently, cell attachment and growth. Surface and interfacial microscopic observations revealed that, at the beginning of the cell culture test, osteoblasts attached strongly to the inner walls of the pores in the HAp-TiO2 coating. Moreover, osteoblasts on HAp and HAp-TiO2 coatings formed a large extracellular matrix (ECM) after 7days. Over 21days, acicular and coral-shaped bone-like apatite structures were found to be formed by the osteoblasts that were cultured on both the HAp and the HAp-TiO2 coatings; the cells were attached tightly to these coatings and to the inner wall of their pores. TEM observations verified that both the acicular and the coral-shaped bone-like apatite structures were hydroxyapatite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.