Abstract

Celecoxib (CCB), a cyclooxygenase-2 inhibitor, is capable of reducing oxidative stress and vascular endothelial growth factor (VEGF) expression in retinal cells and has been shown to be effective in the treatment of diabetic retinopathy and age-related macular degeneration. However, the ocular bioavailability of CCB is hampered due to its very low aqueous solubility. In a previous study, we developed 0.5% (w/v) aqueous CCB eye drop microsuspensions (MS) containing randomly methylated β-cyclodextrin (RMβCD) or γ-cyclodextrin (γCD) and hyaluronic acid (HA) as ternary CCB/CD/HA nanoaggregates. Both formulations exhibited good physicochemical properties. Therefore, we further investigated their cytotoxicity and efficacy in a human retina cell line in this study. At a CCB concentration of 1000 μg/mL, both CCB/RMβCD and CCB/γCD eye drop MS showed low hemolysis activity (11.1 ± 0.3% or 4.9 ± 0.2%, respectively). They revealed no signs of causing irritation and were nontoxic to retinal pigment epithelial cells. Moreover, the CCB eye drop MS exhibited significant anti-VEGF activity by reducing VEGF mRNA and protein levels compared to CCB suspended in phosphate buffer saline. The ex vivo transscleral diffusion demonstrated that a high quantity of CCB (112.47 ± 37.27 μg/mL) from CCB/γCD eye drop MS was deposited in the porcine sclera. Our new findings suggest that CCB/CD eye drop MS could be safely delivered to the ocular tissues and demonstrate promising eye drop formulations for retinal disease treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call