Abstract
CdZnS quantum dots (QDs) with systematically varied Zn content (from 0 to 100%) are formed in an organic matrix using the Langmuir–Blodgett technique. Annealing of the QD structures leads to a removal of the organic matrix and an increase in the Zn content for free-standing CdZnS QDs. After annealing, the size of QDs as determined from UV–vis absorption experiments is in good agreement with electron microscopy measurements. Analysis of UV–vis absorption and Raman scattering data demonstrates strong changes in the content of the CdZnS QDs upon annealing. A model of the process of QD formation is developed using the precipitation model and is found to adequately describe the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.