Abstract

Alloy CdTe(1-x)Se(x) quantum dots (QDs) have been fabricated by an organic route using Cd, Te and Se precursors in a mixture of trioctylamine and octadecylphosphonic acid at 280 °C. The variation of photoluminescence (PL) peak wavelength of the CdTe(1-x)Se(x) QDs compared with CdTe QDs confirmed the formation of an alloy structure. The Se component drastically affected the stability of CdTe(1-x)Se(x) QDs. A Cd0.5Zn0.5S shell coating on CdTe(1-x)Se(x) cores was carried out using oleic acid as a capping agent. CdTe(1-x)Se(x)/Cd0.5Zn0.5S core/shell QDs revealed dark red PL while a yellow PL peak was observed for the CdTe(1-x)Se(x) cores. The PL efficiency of the core/shell QDs was drastically increased (less than 1% for the cores and up to 65% for the core/shell QDs). The stability of QDs in various buffer solutions was investigated. Core/shell QDs can be used for biological applications because of their high stability, tunable PL and high PL efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call