Abstract

Highly luminescent lipophilic CdSe/ZnS core-shell QDs with an emission maximum at 556 nm were synthesized. These QDs were successfully encapsulated into solid lipid nanoparticles (SLNs) using the thin-layer ultrasonication technique. Transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and zeta potential measurement were employed to characterize the QDs-loaded SLNs for morphology, particle size with polydispersity index (PI), and zeta potential. The nanocomposite particles obtained appeared in a shape of spherical or near spherical with the average size of 92.3 nm, PI of 0.235 and zeta potential of -28.74 mV. Each nanocomposite particle contains tens of QDs observed by TEM. Fluorescence measurements show that the encapsulated QDs maintain their high luminescence and narrow/symmetric emission spectra. The experiment result indicates that the nanocomposite particles are stable and slow to photobleach. These luminescent nanocomposite particles have good potentials in biological imaging applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call