Abstract

CdS nanostructures have received much attention in recent years as building blocks for optoelectronic devices due to their unique physical and chemical properties. This progress report provides an overview of recent research about rational design of CdS nanoscale photodetectors. Three kinds of photodetectors according to the metal-semiconductor contact types are discussed in detail: Ohmic contact, Schottky contact, and field enhanced transistor configuration. The focus is on the tuning of optical and electrical properties CdS nanostructures by element doping, composition and bandgap engineering, and heterojunction integration, along with thus modified device performances generated during these tuning processes. Latest concepts of photodetector design such as flexible, self-powered, plasmonic, and piezophototronic photodetectors with novel properties are introduced to demonstrate the future directions of such an exciting research field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.