Abstract

BackgroundGenome-wide gene expression profiling of whole blood is an attractive method for discovery of biomarkers due to its non-invasiveness, simple clinical site processing and rich biological content. Except for a few successes, this technology has not yet matured enough to reach its full potential of identifying biomarkers useful for clinical prognostic and diagnostic applications or in monitoring patient response to therapeutic intervention. A variety of technical problems have hampered efforts to utilize this technology for identification of biomarkers. One significant hurdle has been the high and variable concentrations of globin transcripts in whole blood total RNA potentially resulting in non-specific probe binding and high background. In this study, we investigated and quantified the power of three whole blood profiling approaches to detect meaningful biological expression patterns.MethodsTo compare and quantify the impact of different mitigation technologies, we used a globin transcript spike-in strategy to synthetically generate a globin-induced signature and then mitigate it with the three different technologies. Biological differences, in globin transcript spiked samples, were modeled by supplementing with either 1% of liver or 1% brain total RNA. In order to demonstrate the biological utility of a robust globin artifact mitigation strategy in biomarker discovery, we treated whole blood ex vivo with suberoylanilide hydroxamic acid (SAHA) and compared the overlap between the obtained signatures and signatures of a known biomarker derived from SAHA-treated cell lines and PBMCs of SAHA-treated patients.ResultsWe found cDNA hybridization targets detect at least 20 times more specific differentially expressed signatures (2597) between 1% liver and 1% brain in globin-supplemented samples than the PNA (117) or no treatment (97) method at FDR = 10% and p-value < 3x10-3. In addition, we found that the ex vivo derived gene expression profile was highly concordant with that of the previously identified SAHA pharmacodynamic biomarkers.ConclusionsWe conclude that an amplification method for gene expression profiling employing cDNA targets effectively mitigates the negative impact on data of abundant globin transcripts and greatly improves the ability to identify relevant gene expression based pharmacodynamic biomarkers from whole blood.

Highlights

  • Genome-wide gene expression profiling of whole blood is an attractive method for discovery of biomarkers due to its non-invasiveness, simple clinical site processing and rich biological content

  • Globin mitigation improves microarray data quality In order to quantify the impact of excess globin on hybridization quality, we developed a controlled system using Jurkat RNA spiked with varying levels of globin transcript as well as low levels (1%) of brain and liver RNA supplements

  • PNA treatment was found to improve the Percent Present metric by approximately 10 percent, while the cDNA amplification improved this metric by 25 percent and reduced the background correlated to the amount of globin spiked into each sample

Read more

Summary

Introduction

Genome-wide gene expression profiling of whole blood is an attractive method for discovery of biomarkers due to its non-invasiveness, simple clinical site processing and rich biological content. The introduction of point-of-collection products that stabilize nucleic acids for whole blood (i.e. PAXgene, Tempus) has proven to be a major advance in the reduction of process-related artifacts [9,10]. These systems generally allow the collection of whole blood directly into a stabilizing reagent that prevents further RNA transcription and degradation. These stabilization technologies are readily available, many studies employ methods subject to sample storage or processing artifacts [11]. It has been shown that delays in processing blood samples can lead to changes in expression of thousands of genes [9,12,13]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call