Abstract
Osteoarthritis (OA) is generally considered to be characterized by progressive articular cartilage destruction. Increasing evidence demonstrates that CDK9, which is a member of cyclin-dependent kinase family, plays a significant role in the regulation of acute and chronic inflammatory diseases. IL-1β, a major proinflammatory cytokine, was used to establish a model of OA in vitro after stimulating chondrocytes. We found that CDK9 was highly expressed in in vitro and in vivo models of inflammation. The role of LDC000067 (abbreviated as LDC067), a specific inhibitor of CDK9, in protecting articular cartilage from immune response has not been fully clarified. Intriguingly, in this study, we demonstrated that LDC067 prevented IL-1β-induced production of metalloproteinases (MMPs) and inflammatory cytokines, including MMP3, MMP9, MMP13, IL-6, IL-8 and TNF-ɑ. Furthermore, we revealed that LDC067 inhibited IL-1β-induced NF-κB signaling pathway activation in chondrocytes. The inhibition of CDK9 could also delay cartilage degeneration in an anterior cruciate ligament transection (ACLT) mouse model in vivo. Taken together, these results highlighted the significance of this CDK9 inhibitor in preventing cartilage destruction and indicated that LDC067 might serve as a potential therapeutic agent for OA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have