Abstract

CDK5 regulatory subunit-associated protein 3 (CDK5RAP3) plays a crucial role in mammalian liver development and hepatic function by controlling hepatocyte proliferation and differentiation, glucose and lipid metabolism, UFMylation, and endoplasmic reticulum homeostasis. However, the role of CDK5RAP3 in liver regeneration remains unknown. A liver-specific Cdk5rap3 knockout (CKO) mouse model was used to study the function of CDK5RAP3 during liver regeneration induced by standard two-thirds partial hepatectomy (PHx). Twenty-four hours after PHx, the liver-to-body weight ratio was markedly higher in CKO mice than in wild-type mice. However, this ratio did not increase significantly and gradually over time after PHx in CKO mice. Hepatocyte proliferation was significantly delayed in CKO mice compared with wild-type mice. Meanwhile, CDK5RAP3 deficiency increased lipid accumulation, impaired glycogen synthesis, and lowered blood glucose levels after PHx. Critically, the absence of CDK5RAP3 seemed to promote an inflammatory response and induce apoptosis at a late stage of liver regeneration. In addition, CDK5RAP3 deficiency disrupted UFMylation homeostasis and aggravated endoplasmic reticulum stress in hepatocytes after PHx. Taken together, these data suggest that CDK5RAP3 enhances liver regeneration, at least partially via controlling cell cycle and glucose and lipid metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.