Abstract

Rigorous spatiotemporal regulation of cell division is required to maintain genome stability. The final stage in cell division, when the cells physically separate (abscission), is tightly regulated to ensure that it occurs after cytokinetic events such as chromosome segregation. A key regulator of abscission timing is Aurora B kinase activity, which inhibits abscission and forms the major activity of the abscission checkpoint. This checkpoint prevents abscission until chromosomes have been cleared from the cytokinetic machinery. Here we demonstrate that the mitosis-specific CDK11p58 kinase specifically forms a complex with cyclin L1β that, in late cytokinesis, localizes to the stem body, a structure in the middle of the intercellular bridge that forms between two dividing cells. Depletion of CDK11 inhibits abscission, and rescue of this phenotype requires CDK11p58 kinase activity or inhibition of Aurora B kinase activity. Furthermore, CDK11p58 kinase activity is required for formation of endosomal sorting complex required for transport III filaments at the site of abscission. Combined, these data suggest that CDK11p58 kinase activity opposes Aurora B activity to enable abscission to proceed and result in successful completion of cytokinesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call