Abstract

This study aimed to analyze multiomics data and construct a regulatory network involving kinases, transcription factors, and immune genes in hepatocellular carcinoma (HCC) prognosis. The researchers used transcriptomic, proteomic, and clinical data from TCGA and GEO databases to identify immune genes associated with HCC. Statistical analysis, meta-analysis, and protein-protein interaction analyses were performed to identify key immune genes and their relationships. In vitro and in vivo experiments validated the CDK1-SRC-HSP90AB1 network's effects on HCC progression and antitumor immunity. A prognostic risk model was developed using clinicopathological features and immune infiltration. The immune genes LPA, BIRC5, HSP90AB1, ROBO1, and CCL20 were identified as the key prognostic factors. The CDK1-SRC-HSP90AB1 network promoted HCC cell proliferation and migration, with HSP90AB1 being transcriptionally activated by the CDK1-SRC interaction. Manipulating SRC or HSP90AB1 reversed the effects of CDK1 and SRC on HCC. The CDK1-SRC-HSP90AB1 network also influenced HCC tumor formation and antitumor immunity. Overall, this study highlights the importance of the CDK1-SRC-HSP90AB1 network as a crucial immune-regulatory network in the HCC prognosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call