Abstract

BackgroundOrderly G2/M transition in the cell cycle is controlled by the cyclin-dependent kinase 1/cyclin B (CDK1/CCNB) complex. We aimed to comprehensively investigate the roles of CDK1, CCNB1, and CCNB2 via multi-omics analysis and their relationships with immune infiltration in hepatocellular carcinoma (HCC).Material/MethodsThe transcriptional data and the epigenetic and genetic alterations of CDK1, CCNB1, and CCNB2, as well as their impacts on prognosis in HCC patients, were identified using multiple databases. The correlations between expression of these genes and immune infiltration in HCC were then explored using the TIMER database.ResultsOverall, mRNA expression of CDK1, CCNB1, and CCNB2 was up-regulated in various tumor tissues including HCC. Higher expression of these genes was associated with poorer prognosis in HCC patients. Lower promoter methylation of these genes might cause higher expression levels in tumor tissues of HCC. Genetic alterations and several methylated-CpG sites in these genes were significantly associated with survival. Notably, expression levels of CDK1, CCNB1, and CCNB2 were positively correlated with infiltrating levels of CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells in HCC. In addition, significant correlations between the expression of these genes and various immune markers in HCC, such as PD-1, PDL-1, and CTLA-4, were also observed.ConclusionsCDK1, CCNB1, and CCNB2 are potential prognostic biomarkers and associated with immune cell infiltration in HCC. The genes may be utilized to predict the reaction of immunotherapy. Combining inhibitors of these genes with immunotherapy may improve the survival time of HCC patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call