Abstract

Background & AimsMetabolic imbalance and inflammation are common features of chronic liver diseases. Molecular factors controlling these mechanisms represent potential therapeutic targets. CD73 is the major enzyme that dephosphorylates extracellular adenosine monophosphate (AMP) to form the anti-inflammatory adenosine. CD73 is expressed on pericentral hepatocytes, which are important for long-term liver homeostasis. We aimed to determine if CD73 has nonredundant hepatoprotective functions.MethodsLiver-specific CD73 knockout (CD73-LKO) mice were generated by targeting the Nt5e gene in hepatocytes. The CD73-LKO mice and hepatocytes were characterized using multiple approaches.ResultsDeletion of hepatocyte Nt5e resulted in an approximately 70% reduction in total liver CD73 protein (P < .0001). Male and female CD73-LKO mice developed normally during the first 21 weeks without significant liver phenotypes. Between 21 and 42 weeks, the CD73-LKO mice developed spontaneous-onset liver disease, with significant severity in male mice. Middle-aged male CD73-LKO mice showed hepatocyte swelling and ballooning (P < .05), inflammation (P < .01), and variable steatosis. Female CD73-LKO mice had lower serum albumin levels (P < .05) and increased inflammatory genes (P < .01), but did not show the spectrum of histopathologic changes in male mice, potentially owing to compensatory induction of adenosine receptors. Serum analysis and proteomic profiling of hepatocytes from male CD73-LKO mice showed significant metabolic imbalance, with increased blood urea nitrogen (P < .0001) and impairments in major metabolic pathways, including oxidative phosphorylation and AMP-activated protein kinase (AMPK) signaling. There was significant hypophosphorylation of AMPK substrates in CD73-LKO livers (P < .0001), while in isolated hepatocytes treated with AMP, soluble CD73 induced AMPK activation (P < .001).ConclusionsHepatocyte CD73 supports long-term metabolic liver homeostasis through AMPK in a sex-dependent manner. These findings have implications for human liver diseases marked by CD73 dysregulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.