Abstract

MASLD has become the most prevalent chronic liver disorder, with no approved treatment. Our previous work demonstrated the efficacy of a pan-ErbB inhibitor, Canertinib, in reducing steatosis and fibrosis in a murine fast-food diet (FFD) model of MASLD. The current study explores the effects of hepatocyte-specific ErbB1 (i.e. EGFR) deletion in the FFD model. EGFRflox/flox mice, treated with AAV8-TBG-CRE to delete EGFR specifically in hepatocytes (EGFR-KO), were fed either a chow-diet or FFD for 2 or 5-months. Hepatocyte-specific EGFR deletion reduced serum triglyceride levels but did not prevent steatosis. Surprisingly, hepatic fibrosis was increased in EGFR-KO mice in the long-term study, which correlated with activation of TGFβ1/fibrosis signaling pathways. Further, nuclear levels of some of the major MASLD regulating transcription factors (SREBP1, PPARγ, PPARα, and HNF4α) were altered in FFD-fed EGFR-KO mice. Transcriptomic analysis revealed significant alteration of lipid metabolism pathways in EGFR-KO mice with changes in several relevant genes, including downregulation of fatty-acid synthase and induction of lipolysis gene, Pnpla2, without impacting overall steatosis. Interestingly, EGFR downstream signaling mediators, including AKT, remain activated in EGFR-KO mice, which correlated with increased activity pattern of other receptor tyrosine kinases, including ErbB3/MET, in transcriptomic analysis. Lastly, Canertinib treatment in EGFR-KO mice, which inhibits all ErbB receptors, successfully reduced steatosis, suggesting the compensatory roles of other ErbB receptors in supporting MASLD without EGFR. Hepatocyte-specific EGFR-KO did not impact steatosis, but enhanced fibrosis in the FFD model of MASLD. Gene-networks associated with lipid metabolism were greatly altered in EGFR-KO, but phenotypic effects might be compensated by alternate signaling-pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.