Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4+ T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both invitro and invivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood. This study's aims were three-fold, to (1) evaluate the efficacy of CD4+ T cell-derived DNT cells treatment on AD mice, (2) understand how DNT treatment make changes in different cell types of 5FAD mice, (3) identify the side effects of DNT treatment. We performed tail vein injection of transformed and amplified CD4+ T cell-derived DNT cells into 5 × FAD mice, while using WT mice and saline injection 5FAD mice as controls. DNT suspensions or NaCl alone were administered to 5 × FAD mice at the 6 months of age. For intravenous injection (n = 10 for both DNT and control injections), 5 × FAD mice were injected with a total of 5 × 106 DNT cells suspended in 200 μL of 0.9% NaCl or 0.9% NaCl alone via the lateral tail vein. Behavioral tests and pathology tests were carried out 30 days after cell transplantation. Through qualitative analysis, we identified 6 main themes. DNT from young wild-type mice enhance the capability of spatial learning and memory in AD mice. DNT cell treatment rejuvenates the microglial function. DNT cell treatment improves the state of oligodendrocytes. DNT cell treatment finetunes the activation of the immune system. DNT cell treatment improves the synaptic plasticity and increases the complexity of neurons. DNT cell treatment reduces the density of amyloid Beta plaques deposition in the cortex and hippocampus of 5 × FAD mice. The findings from this study reveal that DNT treatment improved spatial memory and learning abilities, reduced Aβ deposition, and enhanced synaptic plasticity, contrasting with previous reports on thymus-derived DNT cells. Additionally, CD4+ T cell-derived DNT therapy exhibited anti-inflammatory effects and modulated microglial function, promoting a neuroprotective environment. Notably, DNT treatment also reduced tau pathology by decreasing levels of abnormally phosphorylated tau. These findings suggest that CD4+ T cell-derived DNT cells hold therapeutic potential for AD, effectively targeting both Aβ and tau pathologies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have